
Drive or Drunk - Design Document

Design and Implementation of Mobile Applications

Authors:

Armando Fiorini (10709856)
Ahmet Eren Genis (11062471)
Christian Mariano (10770302)

Academic Year: 2024-25

i

Contents

Contents i

1 Introduction 1
1.1 Purpose . 1
1.2 Scope . 1
1.3 Definitions, Acronyms, and Abbreviations 1

1.3.1 Definitions . 1
1.3.2 Acronyms . 2

1.4 Reference Documents . 2
1.5 Packages Used – Application . 3
1.6 Document Structure . 3
1.7 Entity Relationship Diagram . 4

2 Architectural Design 7
2.1 Architectural Style . 7
2.2 Key Features . 8
2.3 High-level Components and Their Interaction 9
2.4 Component View . 11

2.4.1 Components Description . 12
2.4.2 Model View Controller (MVC) . 15

2.5 Deployment View . 16

3 User Interface Design 19
3.1 Introduction . 19
3.2 Mobile Application Interface . 19

4 Requirements 35

5 Implementation, Integration and Testing 37

5.1 Unit Tests . 37
5.2 Widget Tests . 37
5.3 Integration Tests . 38
5.4 Coverage Analysis . 39

List of Figures 41

1

1| Introduction

1.1. Purpose

This document outlines the technical design and implementation strategies adopted in the
development of the Drive or Drunk mobile application. It covers the structure of both
the front-end user experience and the supporting back-end services.

The document also illustrates the application’s main features through dynamic interaction
flows and interface organization, providing insight into how users engage with the system
during typical usage scenarios.

1.2. Scope

Drive or Drunk is a mobile platform developed to offer a smart and socially responsible
solution to the challenges associated with alcohol consumption during nightlife activities.
Whether at clubs, parties, or other social gatherings, individuals often struggle with
the decision between abstaining from alcohol to drive or risking impaired driving—with
potentially dangerous outcomes.

The app connects two types of users: those who remain sober (designated drivers) and
those who have consumed alcohol and seek a safe way to return home. The system is
built around a community-driven model that encourages networking, mutual trust, and
social exchange.

1.3. Definitions, Acronyms, and Abbreviations

1.3.1. Definitions

• Designated Driver: A sober individual who volunteers or agrees to drive others
who have consumed alcohol, ensuring their safe return home.

• Firestore: A cloud-based NoSQL database provided by Firebase, used to store user

2 1| Introduction

data and event-related information in real time.

• Flutter: An open-source UI software development kit created by Google, used to
develop cross-platform mobile applications.

• Firebase Authentication: A service that allows secure user authentication using
email, social logins, or anonymous access.

• Base64: A method for encoding binary data (like images) into text format, useful
for storing and transferring media via databases or APIs.

• Widget: A reusable UI component in Flutter that defines part of the app interface
and behavior.

1.3.2. Acronyms

• API: Application Programming Interface

• HTTPS: Hyper Text Transfer Protocol over SSL.

• TLS: Transport Layer Security.

• SSL: Secure Socket Layer.

• DD: Design Document

• ER: Entity-Relationship.

• UI: User Interface

• DBMS: DataBase Management System.

• FCM: Firebase Cloud Messaging

• JSON: JavaScript Object Notation

• IdP: Identity Provider.

• OAuth: Open Authorization.

• OCR: Optical Character Recognition

1.4. Reference Documents

• Flutter SDK Documentation: https://docs.flutter.dev/

• Firebase Documentation: https://firebase.google.com/docs

https://docs.flutter.dev/
https://firebase.google.com/docs

1| Introduction 3

• Google Maps Platform Documentation: https://developers.google.com/maps/

documentation

• Azure Face API Documentation: https://learn.microsoft.com/en-us/azure/

cognitive-services/face/

• pytesseract Documentation: https://pypi.org/project/pytesseract/

• Slides from the course Design and Implementation of Mobile Applications.

1.5. Packages Used – Application

The Drive or Drunk mobile application was developed using the Flutter SDK and inte-
grates a variety of third-party packages to support its core functionalities. These packages
enable authentication, data persistence and external service integration.

• firebase_auth: Provides authentication methods including email and password
login. https://pub.dev/packages/firebase_auth

• google_sign_in: Allows users to authenticate using their Google accounts. https:
//pub.dev/packages/google_sign_in

• cloud_firestore: Used for storing and retrieving structured user and event data.
https://pub.dev/packages/cloud_firestore

• google_maps_flutter: Embeds interactive Google Maps with user markers and
navigation. https://pub.dev/packages/google_maps_flutter

1.6. Document Structure

• Section 1: Introduction
This section introduces the purpose and scope of the Drive or Drunk application,
along with a summary of the required functionalities. It also defines key terms,
acronyms, and abbreviations that appear throughout the document, and outlines
the document’s structure.

• Section 2: Architectural Design
Targeted primarily at developers, this section provides a comprehensive overview of
the system architecture. It begins by describing the adopted architectural style and
the logical division of the application into layers. It then details the behavior and
data flow of the main functionalities offered by the app.

https://developers.google.com/maps/documentation
https://developers.google.com/maps/documentation
https://learn.microsoft.com/en-us/azure/cognitive-services/face/
https://learn.microsoft.com/en-us/azure/cognitive-services/face/
https://pypi.org/project/pytesseract/
https://pub.dev/packages/firebase_auth
https://pub.dev/packages/google_sign_in
https://pub.dev/packages/google_sign_in
https://pub.dev/packages/cloud_firestore
https://pub.dev/packages/google_maps_flutter

4 1| Introduction

• Section 3: User Interface Design
This part focuses on the user-facing components of the app. It includes mockups
and diagrams illustrating the application’s key screens and navigation flow, outlining
how users interact with different features in the mobile interface.

• Section 4: Implementation, Integration, and Test Plan
The final section covers the implementation strategy and integration steps, followed
by testing procedures. It includes an in-depth description of the core modules and
explains how they are developed, tested, and validated to ensure proper functional-
ity.

1.7. Entity Relationship Diagram

Figure 1.1 presents the Entity Relationship (ER) diagram representing the core data model
of the Drive or Drunk application, as implemented in Firebase. The diagram captures
the main collections (entities), their attributes, and the relationships among them.

The application is structured around five principal collections:

• User: Each user has a unique identifier along with profile information such as email,
username, name, age, and profile picture. Additional fields include verification
status and references to their favorite users and events, as well as the events they
are registered to attend.

• Event: This collection stores metadata about events, including their name, location
(as a geo-point), image, description, and scheduled date.

• Conversation and Message: Users communicate via conversations, which are
linked to two users (user1 and user2) and contain a list of messages. Each message
references its sender, has a timestamp, and a flag indicating whether it has been
seen.

• Review: Users can receive reviews from others in the form of textual feedback and
ratings. Each review is typed (e.g., driver or drunkard) and references its author.

The relationships among the collections include:

• A User can be registered to multiple Events, and an Event can have multiple
registered users (many-to-many).

• A User can mark other users and events as favorites, modeled via arrays of refer-
ences.

1| Introduction 5

• Each Conversation connects two Users, and each conversation includes multiple
Messages.

• Messages are authored by a User.

• Reviews are written by a User and are associated with the reviewed User.

This data model supports a scalable and flexible backend, taking advantage of Firebase’s
document-oriented structure while preserving relational consistency through references
and denormalization where appropriate.

Figure 1.1: Entity Relationship Diagram of Firebase Collections

7

2| Architectural Design

2.1. Architectural Style

The system is structured into three logical layers, with some cross-layer interactions due
to the use of cloud-managed services.

• Presentation Layer: This layer corresponds to the Flutter mobile client, which
handles the user interface and most user interactions. It communicates directly with
Firebase services — such as Firestore for data access and Firebase Authentication
for user login and session handling — reducing the need for an intermediate backend
in standard flows.

• Application Layer: This includes both Firebase Authentication (which provides
identity verification, token issuance, and session security) and a custom backend
hosted on Render. The backend is responsible for managing tasks that cannot be
safely or efficiently performed on the client, such as event fetching through the
Ticketmaster API and facial recognition for ID verification.

• Data Layer: This layer consists of Firebase Firestore, which stores structured
collections like users, events, ride history, and verification data. It supports real-
time sync and is accessed directly by the client for most reads and writes, subject
to Firebase security rules.

Figure 2.1: Black-box view of the Drive or Drunk system architecture

8 2| Architectural Design

2.2. Key Features

The key features of the “Drive or Drunk” mobile application include:

1. Find available drivers: Users can find sober drivers or those who have not con-
sumed alcohol nearby for a safe ride. - **Booking mode**: Users can book a ride
in advance, allowing them to plan their evening with more peace of mind.

2. Local event calendar: Once a city is selected, users can access an interactive
calendar with events scheduled daily (e.g., nightclub events, concerts, parties). By
clicking on a specific event, all drivers available for that event are displayed.

• All users can put events

• Only verified users can fill up an event

2| Architectural Design 9

3. Event mapping: Selected events can be viewed on a map, with the option to see
available drivers nearby. This system helps users visually and intuitively plan their
night by choosing the most convenient ride based on the event’s location.

4. Messaging area: Users can communicate directly via the app to coordinate ride
details, such as times and meeting points.

5. Reviews and ratings: Users can write reviews and rate drivers using a 0 to 5-star
system. This helps ensure the quality of the service by highlighting the best drivers.

6. User verification: Users must register by entering their ID card information, which
will be verified to ensure that only qualified users offer rides.

7. Favorites: Users can add events to their favorites to receive notifications if a driver
becomes available for that event. This feature keeps users informed and ensures a
safe ride for events of interest.

2.3. High-level Components and Their Interaction

The architecture of the Drive or Drunk application follows a layered client–cloud model
designed for modularity, clarity, and extensibility. The client is a cross-platform mobile
app developed in Flutter, where state is managed using the provider package. On the
cloud side, the system relies primarily on Firebase for authentication and data persis-
tence, while delegating specific high-complexity operations—such as facial verification,
OCR, and third-party event integration—to a lightweight backend hosted on Render.

The Flutter application is organized using a feature-first structure, where each fea-
ture—such as authentication, events, rides, chat, or profile—encapsulates its screens,
business logic, and state management. Providers are initialized in main.dart using
MultiProvider, where core state objects like AuthProvider, UserProvider, and Theme

Provider are injected before the app launches.

Routing is centralized in lib/config/routes.dart, and is dynamically generated through
AppRoutes.generateRoute. This method uses the current authentication state to control
access to protected screens such as the profile, chat, and ride history pages. The app uses
a declarative navigation model, in which the rendered screen is determined directly
by the user’s current state, rather than being imperatively pushed or popped.

Upon successful login, the user is routed to the NavigationMenu widget lib/navigation_
menu.dart, which manages the bottom navigation interface of the app. This widget

10 2| Architectural Design

maintains the currently selected index and renders one of four main screens: HomePage,
EventsMapPage, ChatListPage, and ProfilePage. Navigation is handled by a Navigation
Bar, and tapping a destination updates the index to show the corresponding screen within
the scaffold’s body. This structure provides seamless transitions between the app’s core
sections and acts as the main entry point after authentication.

The application follows a clear separation of concerns across the following macro compo-
nents:

• Models (lib/models/): Contains plain Dart data classes representing domain en-
tities such as User, Event, Ride, and Conversation, used throughout the app for
serialization and business representation.

• Services (lib/services/): Encapsulates the app’s business logic and external
data access. FirestoreService manages CRUD operations on Firebase Firestore
collections, while GooglePlacesService handles geolocation autocomplete via the
Google Places API. Other services interact with REST endpoints on the Render
backend for face verification and OCR tasks.

• Features (lib/features/): Provides user-facing functionality divided by domain
(e.g., authentication, chat, events). Each module includes its own UI screens and
connects to the appropriate services through providers and consumers. For exam-
ple, the chat feature loads messages from Firestore and renders them with custom
widgets.

• Widgets (lib/widgets/): Offers a wide set of reusable UI components including
form fields, buttons, star ratings, Google Maps wrappers, and custom builders.

• Utils (lib/utils/): Contains general-purpose helper functions and utilities for
formatting, validation, HTTP requests, and advanced features such as image-based
identity checks.

• Core (lib/core/): Hosts application-wide constants, color themes, device info
utilities, and global style definitions to maintain a consistent design across the app.

Authentication is handled by AuthRepositoryImpl and FirebaseAuth, while user identity
and session state are maintained using the UserProvider. Theme switching between dark
and light modes is controlled by ThemeProvider, and exposed through UI components
like the ThemeChangeButton.

Overall, this architecture enforces a clear separation between presentation, logic, and data
access, promoting reusability, testability, and scalability.

2| Architectural Design 11

2.4. Component View

This section expands on the high-level architecture by analyzing the internal organiza-
tion of all the macro components involved in the application: the arrows represent the
navigation flow between the pages in the client view and the interactions with the model
and all the external components. For readability reasons we modeled the the View-Model
and Model-DB interactions since all the model components retrieve and load data in the
respective collection in the DB and sends the data to the view where it is processed : the
pages rendering logic is indeed embedded in the pages themselves and doesn’t make use
of a dedicated backend structure.

Figure 2.2: Architecture of the application

12 2| Architectural Design

2.4.1. Components Description

The functionalities of the app are offered to the user through the interaction betwwen
local and remote components.
This paragraphs expands the description of the single components as they are presented
in the Component view of the app above.

View

The view includes all the pages the user can navigate through: in Drive or Drunk the
view also embed the controller logic since the rendering logics are implemented directly
inside the pages and doesn’t make use of dedicated backend components.
A detailed description of all the view components is provided below.

• Login Page: the Login Page is the first page shown to the user at the users: this
page allows the user to log in using a DriveOrDrunk or a Google account (Google
SSO login), to reset their password or create a new DriveOrDrunk account if they
don’t have one.

• Register Page: this page is shown to the user who wants to create a new DriveOr-
Drunk account: it implements the form where the user will insert all the necessary
data for the creation of it (Name, e-mail, password)

• NavigationBar: when an user logs into the app, the Navigation bar is loaded: this
component allows the user to move between the four main sections of the app: the
Homepage the Events Map Page the ChatListPage and the Profile Page

• Homepage: the Homepage is the first page the user can see after accessing the
app as it’s the one loaded by the Navigation Bar by default. This page hosts the
research functionalities of the app: through a tab the user can switch between Users
and Events research. While the events can be searched for name place and date,
only the name can be used to search for Users. In the trending section the user can
have a view of the the most joined events in the database.

• EventsMapPage: thanks to this function, implemented through the integration
with google Maps api, the user can search for any place in the map and see all the
exact positions of the events available in that area, visualizable as pointers in the
map or as a list in the EventsListPage

• ChatListPage: the chatlist page shows all the active chats between the current

2| Architectural Design 13

user and other users in the app, clicking on a chat the ChatPage opens, which
implements the actual messaging functions allowing the users to send messages to
each other

• ChatPage: this page is shown when chatting with a user: it can be reached from
the ChatListPage or from the profile page of an user through an apposite button.
ProfilePage can also be reached from this page clicking on the name of the other
user involved in the chat, visible in the page

• ProfilePage: This page is used to show the profile of a generic user, but, if accessed
through the Navigation Bar, it shows the current user’s personal profile. Through
their personal page the user can modify his age and profile picture, see a preview
or access the list (shown in ReviewListPage) of the reviews that other users left
them, access the PersonalRidesPage to see the rides he has created as a driver
and joined as a drunkard, and access the procedure to verify his profile through his
driver license to be allowed to join events as a driver. This functionality is offered
through a script in Render, that receives a picture of the user and of his driver
license and relies on Azure Face to compare the two pictures.

• ReviewCreationPage: this page contains the form to create a review and can be
accessed by the profile page of each other user in the system to leave him a review
to rate the experience with that user as a driver or drunkard.

• ReviewListPage: this page is accessible from self and other users profile pages
and offers a complete view of all the reviews received by that user. The two kinds
of list (driver and drunkard reviews) are shown in two distincted reviewListPages
accessed through different buttons in the profile page.

• EventListPage:)This page shows a list of events resulting from a research made
from the HomePage or from the EventMapPage. When selecting an event from the
results the user is redirected to their profile page, the list can be filtered by favorites

• EventDetailsPage: This page is accessed after the selection of one event from
the homepage trending events section, an EventListPage or by Rides page when
reached by an user’s profile page (details below). It shows the name place and
description of the event and allows the user to subscribe as a driver or drunkard to
the event

• EventsCreationPage: In DriveOrDrunk users can also create their custom events:
his page is accessible through a button on the EventListPage and it allows a user
to create their personal event.

14 2| Architectural Design

• UsersListPage: This page is shown as the result of an user research made using
the homepage research form, when selecting an user from the results the user is
redirected to their profile page, the list can be filtered by favorites

• RidesPage: this page is accessible by the EventDetailsPage and by the profile
page of another user. In the first case it shows the list of the available rides for that
event with info about the driver of each ride, whose profile page can be accessed
tapping on the info box. In the second case instead, it shows all the rides that the
user is offering as a driver, with info of each event: in this case the info box will
redirect the user to the EventDetailsPage of that event.

• PersonalRidesPage: this page is shown when the user clicks on the available rides
button on his personal profile page: it has to sections handled by a tab bar: the
two sections show respectively the list of rides booked as a drunkard and created as
a driver. In the first section for each ride informations about event and driver are
available and linked to EventDetails and Profile page respectively of the driver and
the event. In the second one only the one about the event are provided.

Model

The Model is composed by the User, Event; Ride, Conversations, and Review components.
The model components is in charge of retrieving data from database and passing it to the
view and viceversa.

Render

Render is a cloud service that

External Services

• TicketMaster
TicketMaster is used to retrieve data about events to be shown inside the applica-
tion. Render periodically retrieves data from TicketMaster and pushes it into the
database.

• Google Maps
Google Maps is used in the EventsMapPage to show the Map with the position of
events in each selected area

• Google Auth
Google Auth is used to allow SSO login for users using their google account.

2| Architectural Design 15

• Azure Face
Azure Face is used by render to perform face recognition during the identity verifi-
cation procedure

Firebase

Firebase is a Baas (Backend-as-a-Service) for web and mobile applications developement.
For our purpose we used only two services among the ones offered.

• FirebaseAuth
This service offers automatization of the procedure of user authentication, all the
created users are saved on the autentication service storage and synchronized with
the User collection in the database.

• Firebase cloud Firestore
Through this service Firebase offers a NoSQL database for our application which
contains all the data the application needs. The collection contained in the database
are User, Event, Review, Conversations, Messages and Rides.

2.4.2. Model View Controller (MVC)

Model View Controller (usually known as MVC) is a software design pattern commonly
used for developing user interfaces. It divides the related program logic into three in-
terconnected elements to separate internal representations of information from the ways
information is presented to and accepted from the user.

These three components are:

• Model: The central component of the pattern. It is the application’s dynamic data
structure, independent of the user interface. It directly manages the data, logic,
and rules of the application.

• View: Any representation of information that will be displayed to the end user.

• Controller: Accepts input and converts it to commands for the model or view, this
component in Drive Or Drunk is actually integrated in the view, which encapsulates
all the rendering logics.

16 2| Architectural Design

2.5. Deployment View

Figure ?? shows the deployment topology of the Drive or Drunk system. The diagram
illustrates how the system’s components are distributed across various devices and cloud
platforms. Each node represents a logical or physical entity, along with its underlying
operating system or hosting service.

Figure 2.3: Deployment view of the application

• Tier 1 – Client Device: The client device is a smartphone running Android or
iOS, where the Flutter application is installed. This app handles user interaction, UI
rendering, and communicates directly with both Firebase services and the backend

2| Architectural Design 17

server using secure HTTPS requests.

• Tier 2 – Firebase Authentication: This tier is hosted in the cloud and provides
user authentication services. It is responsible for managing sign-in operations, in-
cluding Google Sign-In, and issuing secure access tokens used by the mobile app to
authenticate requests.

• Tier 3 – Render Backend Server: This tier hosts a custom backend deployed on
Render. It handles application-specific logic that cannot or should not be executed
on the client, such as facial verification, image processing, and fetching external
events from the Ticketmaster API. It communicates with both the client and Fire-
store securely via RESTful interfaces.

• Tier 4 – Firebase Firestore Database: This cloud-based NoSQL database stores
persistent information such as user profiles, events, ride requests, and verification
metadata. It is accessed by both the mobile client and the backend through Fire-
base’s secure SDK and API interfaces.

19

3| User Interface Design

3.1. Introduction

The aim of this section is to show the design of the main screens of the user application,
describing the flow of the main functionalities for which it is intended. The flow is created
according to specific and illustrated input from the end user.

3.2. Mobile Application Interface

20 3| User Interface Design

Figure 3.1: Login Page

3| User Interface Design 21

Figure 3.2: Registration Page

22 3| User Interface Design

Figure 3.3: Homepage

3| User Interface Design 23

Figure 3.4: Event List Page

24 3| User Interface Design

Figure 3.5: Event Creation Page

3| User Interface Design 25

Figure 3.6: Event Detail Page

26 3| User Interface Design

Figure 3.7: Users List Page

3| User Interface Design 27

Figure 3.8: Events Map Page

28 3| User Interface Design

Figure 3.9: Chat Page

3| User Interface Design 29

Figure 3.10: Chat List Page

30 3| User Interface Design

Figure 3.11: Profile Page

3| User Interface Design 31

Figure 3.12: Rides from Profile Page

32 3| User Interface Design

Figure 3.13: Rides from Event Page

3| User Interface Design 33

Figure 3.14: Review Creation Page

34 3| User Interface Design

Figure 3.15: Reviews Page

35

4| Requirements

The following list contains the requirements that the application should satisfy, together
with a brief explanation of them.

1. User Registration and Login
The system allows the registration and login of a user. Users can create an ac-
count by providing their personal details and verifying their identity through facial
recognition and an ID document (e.g., using a free API like Microsoft Azure Face
API).

2. Viewing Events
The system allows users to view an interactive calendar of local events based on
their selected city. These events, such as nightclub parties or concerts, are created
and managed by event organizers or venue owners, not by users.

3. Driver Registration
The system allows users to register as drivers by providing their personal information
and verifying their identity using a government-issued ID. The app requires users
to upload their driver’s license for verification.

4. Driver and User Verification
The system verifies drivers by checking their driver’s license and ID document
against their selfie using an identity verification service. This ensures the authen-
ticity of both drivers and riders on the platform.

5. Ride Booking
The system allows users to book a ride from a driver based on their location and the
available drivers nearby. Users can book rides in advance or on the spot, depending
on availability.

6. Driver Availability
The system allows drivers to mark their availability for specific events. This ensures
that users can see when a driver is available to give them a ride to a particular
event.

36 4| Requirements

7. Event and Driver Matching
The system matches users with available drivers based on their location and the
event they plan to attend. Users can also view a map showing the drivers available
near the event location.

8. Messaging
The system allows users to communicate with drivers via an integrated messaging
system to coordinate ride details such as pick-up points, times, and special instruc-
tions.

9. Reviews and Ratings
The system allows users to rate their drivers using a 0 to 5-star system and leave
feedback. This helps maintain a high level of service quality and trustworthiness
within the platform.

10. Notifications
The system sends push notifications to users to inform them about available drivers,
ride confirmations, and reminders about upcoming events. Notifications are also sent
to drivers when a new user books a ride with them.

11. Favorites and Notifications for Events
The system allows users to add events to their favorites, so they receive notifications
when a driver becomes available for that event. This ensures that users are notified
of ride availability for the events they’re interested in.

37

5| Implementation, Integration

and Testing

In this section, we describe the testing process conducted for the Drive or Drunk ap-
plication. We detail the environments used, the dummy data loaded into the database,
the display formats tested (phone, tablet portrait, tablet landscape), and how external
services were mocked.

The following subsections explain the different types of tests performed: unit tests (used
only to a limited extent due to the app’s heavy reliance on external services), widget tests
(where we thoroughly tested graphics, function calls, and interactions with primary-level
widgets in a controlled environment), and integration tests (run on physical devices with
less control but more realism).

5.1. Unit Tests

Since the application depends heavily on external services (e.g., Firebase Auth, Firestore,
network images, geolocation APIs), only a small portion of the codebase is suited for pure
unit testing. We focused on testing the core models (User, Review, Event, etc.), using
dummy input and mocking external responses.

The average coverage for files in the lib/models/ directory reached 89.5%, as reported
by LCOV. This was achieved thanks to the clean separation of logic and the ability to
inject simulated data.

5.2. Widget Tests

This was the most extensive part of the testing campaign. All major widgets in the project
were tested in controlled environments, with comprehensive use of mocking. Mocked
services included:

• FirebaseAuth (via Mock/FakeUser)

38 5| Implementation, Integration and Testing

• FirebaseFirestore (via the FakeFirebaseFirestore package)

• Network image loading (using the networkImageMock package)

We were unable to fully mock Google Maps APIs; instead, we used dummy coordinates
to simulate geolocation functionality.

Each test loaded the necessary dummy data into the mocked database to simulate specific
user flows (e.g., “user1 created an event and invited user2”). For each widget, we tested
UI rendering, function calls, and first-level interactions with related widgets. When ap-
plicable, we tested the widget across phone and tablet (portrait and landscape) screen
sizes.

5.3. Integration Tests

We conducted end-to-end testing of the application on physical devices to verify real-
world functionality. This included interactions with live Firebase services and network
operations, testing how the app handled delays, errors, and external responses. We pop-
ulated the Firebase database to simulate real situations (with users, events, reviews, etc.)
and tested the main functionalities of our application. Integration testing enables the
simulation of more complex behaviors, navigation between various screens, and, in our
case, allowed us to test using real location data to filter nearby places.

Key integration tests included:

• User authentication

• Searching for events

• Booking rides

• Searching for users

• Sending and displaying chat messages

5| Implementation, Integration and Testing 39

File Name Description Screen Path
login_flow_test.dart Login Login → Home
event_flow_test.dart Search and register

for an event
Login → Home → SearchEvent →
EventsList → EventDetail →
RidesPage

chat_flow_test.dart Search for an user
and send a message

Login → Home → SearchUser →
UsersList → UserProfile → ChatPage

5.4. Coverage Analysis

Using LCOV, we measured an overall line coverage of 85.5% across 4,197 lines, as seen
in Figure 5.1. Several directories reached full or near-full coverage, including constants,
theme, and widget files.

Some lower-coverage areas (e.g., lib/features/authentication, lib/features/events)
were due to hard-to-mock dependencies or edge-case logic.

Excluding code strictly dependent on external APIs (e.g., location/mapping services), we
estimate that the actual testable logic coverage exceeds 90%, providing strong verification
for the app’s core functionality.

Figure 5.1: Code coverage summary generated by LCOV.

41

List of Figures

1.1 Entity Relationship Diagram of Firebase Collections 5

2.1 Black-box view of the Drive or Drunk system architecture 7
2.2 Architecture of the application . 11
2.3 Deployment view of the application . 16

3.1 Login Page . 20
3.2 Registration Page . 21
3.3 Homepage . 22
3.4 Event List Page . 23
3.5 Event Creation Page . 24
3.6 Event Detail Page . 25
3.7 Users List Page . 26
3.8 Events Map Page . 27
3.9 Chat Page . 28
3.10 Chat List Page . 29
3.11 Profile Page . 30
3.12 Rides from Profile Page . 31
3.13 Rides from Event Page . 32
3.14 Review Creation Page . 33
3.15 Reviews Page . 34

5.1 Code coverage summary generated by LCOV. 39

	Contents
	Introduction
	Purpose
	Scope
	Definitions, Acronyms, and Abbreviations
	Definitions
	Acronyms

	Reference Documents
	Packages Used – Application
	Document Structure
	Entity Relationship Diagram

	Architectural Design
	Architectural Style
	Key Features
	High-level Components and Their Interaction
	Component View
	Components Description
	Model View Controller (MVC)

	Deployment View

	User Interface Design
	Introduction
	Mobile Application Interface

	Requirements
	Implementation, Integration and Testing
	Unit Tests
	Widget Tests
	Integration Tests
	Coverage Analysis

	List of Figures

