POLITECNICO
MILANO 1863

SCUOLA DI INGEGNERIA INDUSTRIALE
E DELLINFORMAZIONE

Drive or Drunk - Design Document

Design and Implementation of Mobile Applications

Authors:

Armando Fiorini (10709856)
Ahmet Eren Genis (11062471)
Christian Mariano (10770302)

Academic Year: 2024-25



////M//////////é N 1 \\\\\\\ / \m\\ %
2N /// \ 117717/ s
//// N\ //// ////::_:::\\\ //) \\\ \\\\
NN 779477770770 00 /2 2
NN N e otrts
oty HH1100177 070070 2 2
SO 77752777777 000 2 2 2 2 27
J ///// /// N //// ////N///////////é __ ________,5\ I \\\\\\\ \\w\\ \\\\\\\\\\\\\\ =
~ 3N M s
N T e
—— f ot
—— = R
- ““\\\\\\\\\\\\\\\\\\m\\\w\w\\ 77 /////////////,/////////////// //// ///UU/
N RN R
1 NN
5577 NN
2 T I A O O



Contents

Contents

1 Introduction

1.1 Purpose . . . . . .
1.2 Scope . . ..
1.3 Definitions, Acronyms, and Abbreviations . . . . .. ... ... ... ...

1.3.1 Definitions . . . . . . . ...

1.3.2 Acronyms . . . . ...
1.4 Reference Documents . . . . . . . . . ...
1.5 Packages Used — Application . . . . . . . .. .. .. ... ... .......
1.6 Document Structure . . . . . . ... ...
1.7 Entity Relationship Diagram . . . . . .. .. ... ... ... ... ... ..

2 Architectural Design

2.1 Architectural Style . . . . . . ...
2.2 Key Features . . . . . . ..o
2.3 High-level Components and Their Interaction . . . . ... ... ... ...
24 Component View . . . . . . . . .. L

2.4.1 Components Description . . . . . . . . .. . ... ... .......

2.4.2  Model View Controller (MVC) . . . . . ... ... ... ... ....
2.5 Deployment View . . . . . . . . ..

3 User Interface Design
3.1 Introduction . . . . . . . . ...
3.2 Mobile Application Interface . . . . . . . . . ... ... L.

4 Requirements

5 Implementation, Integration and Testing

11
12
15
16

19
19
19

35

37



5.1 Unit Tests . . . . . . o 37

5.2 Widget Tests . . . . . . . . . 37
5.3 Integration Tests . . . . . . . . . L 38
54 Coverage Analysis . . . . . . . . . .. 39

List of Figures 41



]_ ‘ Introduction

1.1. Purpose

This document outlines the technical design and implementation strategies adopted in the
development of the Drive or Drunk mobile application. It covers the structure of both

the front-end user experience and the supporting back-end services.

The document also illustrates the application’s main features through dynamic interaction
flows and interface organization, providing insight into how users engage with the system

during typical usage scenarios.

1.2. Scope

Drive or Drunk is a mobile platform developed to offer a smart and socially responsible
solution to the challenges associated with alcohol consumption during nightlife activities.
Whether at clubs, parties, or other social gatherings, individuals often struggle with
the decision between abstaining from alcohol to drive or risking impaired driving—with

potentially dangerous outcomes.

The app connects two types of users: those who remain sober (designated drivers) and
those who have consumed alcohol and seek a safe way to return home. The system is
built around a community-driven model that encourages networking, mutual trust, and

social exchange.

1.3. Definitions, Acronyms, and Abbreviations

1.3.1. Definitions

e Designated Driver: A sober individual who volunteers or agrees to drive others

who have consumed alcohol, ensuring their safe return home.

e Firestore: A cloud-based NoSQL database provided by Firebase, used to store user



2 1| Introduction

data and event-related information in real time.

e Flutter: An open-source Ul software development kit created by Google, used to

develop cross-platform mobile applications.

e Firebase Authentication: A service that allows secure user authentication using

email, social logins, or anonymous access.

e Base64: A method for encoding binary data (like images) into text format, useful

for storing and transferring media via databases or APIs.

e Widget: A reusable UI component in Flutter that defines part of the app interface

and behavior.

1.3.2. Acronyms
e API: Application Programming Interface
e HTTPS: Hyper Text Transfer Protocol over SSL.
e TLS: Transport Layer Security.
e SSL: Secure Socket Layer.
e DD: Design Document
e ER: Entity-Relationship.
e UI: User Interface
e DBMS: DataBase Management System.
e FCM: Firebase Cloud Messaging
e JSON: JavaScript Object Notation
e IdP: Identity Provider.
e OAuth: Open Authorization.

e OCR: Optical Character Recognition

1.4. Reference Documents

e Flutter SDK Documentation: https://docs.flutter.dev/

e Firebase Documentation: https://firebase.google.com/docs


https://docs.flutter.dev/
https://firebase.google.com/docs

1| Introduction 3

e Google Maps Platform Documentation: https://developers.google.com/maps/

documentation

e Azure Face API Documentation: https://learn.microsoft.com/en-us/azure/

cognitive-services/face/
e pytesseract Documentation: https://pypi.org/project/pytesseract/

e Slides from the course Design and Implementation of Mobile Applications.

1.5. Packages Used — Application

The Drive or Drunk mobile application was developed using the Flutter SDK and inte-
grates a variety of third-party packages to support its core functionalities. These packages

enable authentication, data persistence and external service integration.

e firebase auth: Provides authentication methods including email and password

login. https://pub.dev/packages/firebase_auth

e google sign in: Allows users to authenticate using their Google accounts. https:

//pub.dev/packages/google_sign_in

e cloud firestore: Used for storing and retrieving structured user and event data.

https://pub.dev/packages/cloud_firestore

e google maps flutter: Embeds interactive Google Maps with user markers and

navigation. https://pub.dev/packages/google_maps_flutter

1.6. Document Structure

e Section 1: Introduction
This section introduces the purpose and scope of the Drive or Drunk application,
along with a summary of the required functionalities. It also defines key terms,
acronyms, and abbreviations that appear throughout the document, and outlines

the document’s structure.

e Section 2: Architectural Design
Targeted primarily at developers, this section provides a comprehensive overview of
the system architecture. It begins by describing the adopted architectural style and
the logical division of the application into layers. It then details the behavior and

data flow of the main functionalities offered by the app.


https://developers.google.com/maps/documentation
https://developers.google.com/maps/documentation
https://learn.microsoft.com/en-us/azure/cognitive-services/face/
https://learn.microsoft.com/en-us/azure/cognitive-services/face/
https://pypi.org/project/pytesseract/
https://pub.dev/packages/firebase_auth
https://pub.dev/packages/google_sign_in
https://pub.dev/packages/google_sign_in
https://pub.dev/packages/cloud_firestore
https://pub.dev/packages/google_maps_flutter

4 1| Introduction

e Section 3: User Interface Design
This part focuses on the user-facing components of the app. It includes mockups
and diagrams illustrating the application’s key screens and navigation flow, outlining

how users interact with different features in the mobile interface.

e Section 4: Implementation, Integration, and Test Plan
The final section covers the implementation strategy and integration steps, followed
by testing procedures. It includes an in-depth description of the core modules and

explains how they are developed, tested, and validated to ensure proper functional-

ity.

1.7. Entity Relationship Diagram

Figure 1.1 presents the Entity Relationship (ER) diagram representing the core data model
of the Drive or Drunk application, as implemented in Firebase. The diagram captures

the main collections (entities), their attributes, and the relationships among them.
The application is structured around five principal collections:

e User: Each user has a unique identifier along with profile information such as email,
username, name, age, and profile picture. Additional fields include verification
status and references to their favorite users and events, as well as the events they

are registered to attend.

e Event: This collection stores metadata about events, including their name, location

(as a geo-point), image, description, and scheduled date.

e Conversation and Message: Users communicate via conversations, which are
linked to two users (userl and user2) and contain a list of messages. Each message
references its sender, has a timestamp, and a flag indicating whether it has been

seel.

e Review: Users can receive reviews from others in the form of textual feedback and

ratings. Each review is typed (e.g., driver or drunkard) and references its author.
The relationships among the collections include:

e A User can be registered to multiple Events, and an Event can have multiple

registered users (many-to-many).

e A User can mark other users and events as favorites, modeled via arrays of refer-

ences.



1| Introduction

e Fach Conversation connects two Users, and each conversation includes multiple

Messages.
e Messages are authored by a User.
e Reviews are written by a User and are associated with the reviewed User.

This data model supports a scalable and flexible backend, taking advantage of Firebase’s

document-oriented structure while preserving relational consistency through references

and denormalization where appropriate.

conversa tion Messag
timestamp | lastMessageTimestamp boo
array messages reference | sender
reference | usert string text
reference | userz timestamp | timestamp
usert user2 sen de
user
int
array | bookedRides
string | email
array | favoritetvents
array favoriteUsers
bool isverified
string | lower_name
string | name
string | profilepicture
array | registeredEvents
array | reviews
f string | username
reviews author  bookedRides driverld drunkards
Review le\ &‘ ﬂf/
Ride
reference | author
int capacity
int rating
reference | driverld favoriteEvents  registeredEvents
string text
armay | drunkards
timestamp | timestamp
reference | eventid
tring type

eventId

/ favoriteUsers

timestamp | date
string description
string image
geopoint | location
string lower_name
string name
string place

Figure 1.1: Entity Relationship Diagram of Firebase

Collections



////M//////////é N 1 \\\\\\\ / \m\\ %
2N /// \ 117717/ s
//// N\ //// ////::_:::\\\ //) \\\ \\\\
NN 779477770770 00 /2 2
NN N e otrts
oty HH1100177 070070 2 2
SO 77752777777 000 2 2 2 2 27
J ///// /// N //// ////N///////////é __ ________,5\ I \\\\\\\ \\w\\ \\\\\\\\\\\\\\ =
~ 3N M s
N T e
—— f ot
—— = R
- ““\\\\\\\\\\\\\\\\\\m\\\w\w\\ 77 /////////////,/////////////// //// ///UU/
N RN R
1 NN
5577 NN
2 T I A O O



2 ‘ Architectural Design

2.1. Architectural Style

The system is structured into three logical layers, with some cross-layer interactions due

to the use of cloud-managed services.

e Presentation Layer: This layer corresponds to the Flutter mobile client, which
handles the user interface and most user interactions. It communicates directly with
Firebase services — such as Firestore for data access and Firebase Authentication
for user login and session handling — reducing the need for an intermediate backend

in standard flows.

e Application Layer: This includes both Firebase Authentication (which provides
identity verification, token issuance, and session security) and a custom backend
hosted on Render. The backend is responsible for managing tasks that cannot be
safely or efficiently performed on the client, such as event fetching through the

Ticketmaster API and facial recognition for ID verification.

e Data Layer: This layer consists of Firebase Firestore, which stores structured
collections like users, events, ride history, and verification data. It supports real-
time sync and is accessed directly by the client for most reads and writes, subject

to Firebase security rules.

Presentation Layer Application Layer Data Layer

Figure 2.1: Black-box view of the Drive or Drunk system architecture



8 2| Architectural Design

2.2. Key Features

The key features of the “Drive or Drunk” mobile application include:

1. Find available drivers: Users can find sober drivers or those who have not con-
sumed alcohol nearby for a safe ride. - **Booking mode**: Users can book a ride

in advance, allowing them to plan their evening with more peace of mind.

2. Local event calendar: Once a city is selected, users can access an interactive
calendar with events scheduled daily (e.g., nightclub events, concerts, parties). By

clicking on a specific event, all drivers available for that event are displayed.
e All users can put events

e Only verified users can fill up an event



2| Architectural Design 9

3. Event mapping: Selected events can be viewed on a map, with the option to see
available drivers nearby. This system helps users visually and intuitively plan their

night by choosing the most convenient ride based on the event’s location.

4. Messaging area: Users can communicate directly via the app to coordinate ride

details, such as times and meeting points.

5. Reviews and ratings: Users can write reviews and rate drivers using a 0 to 5-star

system. This helps ensure the quality of the service by highlighting the best drivers.

6. User verification: Users must register by entering their ID card information, which

will be verified to ensure that only qualified users offer rides.

7. Favorites: Users can add events to their favorites to receive notifications if a driver
becomes available for that event. This feature keeps users informed and ensures a

safe ride for events of interest.

2.3. High-level Components and Their Interaction

The architecture of the Drive or Drunk application follows a layered client—cloud model
designed for modularity, clarity, and extensibility. The client is a cross-platform mobile
app developed in Flutter, where state is managed using the provider package. On the
cloud side, the system relies primarily on Firebase for authentication and data persis-
tence, while delegating specific high-complexity operations—such as facial verification,

OCR, and third-party event integration—to a lightweight backend hosted on Render.

The Flutter application is organized using a feature-first structure, where each fea-
ture—such as authentication, events, rides, chat, or profile—encapsulates its screens,
business logic, and state management. Providers are initialized in main.dart using
MultiProvider, where core state objects like AuthProvider, UserProvider, and Theme

Provider are injected before the app launches.

Routing is centralized in 1ib/config/routes.dart, and is dynamically generated through
AppRoutes.generateRoute. This method uses the current authentication state to control
access to protected screens such as the profile, chat, and ride history pages. The app uses
a declarative navigation model, in which the rendered screen is determined directly

by the user’s current state, rather than being imperatively pushed or popped.

Upon successful login, the user is routed to the NavigationMenu widget 1ib/navigation_

menu.dart, which manages the bottom navigation interface of the app. This widget



10

2| Architectural Design

maintains the currently selected index and renders one of four main screens: HomePage,

EventsMapPage, ChatListPage, and ProfilePage. Navigation is handled by a Navigation

Bar, and tapping a destination updates the index to show the corresponding screen within

the scaffold’s body. This structure provides seamless transitions between the app’s core

sections and acts as the main entry point after authentication.

The application follows a clear separation of concerns across the following macro compo-

nents:

Models (1ib/models/): Contains plain Dart data classes representing domain en-
tities such as User, Event, Ride, and Conversation, used throughout the app for

serialization and business representation.

Services (lib/services/): Encapsulates the app’s business logic and external
data access. FirestoreService manages CRUD operations on Firebase Firestore
collections, while GooglePlacesService handles geolocation autocomplete via the
Google Places API. Other services interact with REST endpoints on the Render
backend for face verification and OCR tasks.

Features (1ib/features/): Provides user-facing functionality divided by domain
(e.g., authentication, chat, events). Each module includes its own UI screens and
connects to the appropriate services through providers and consumers. For exam-
ple, the chat feature loads messages from Firestore and renders them with custom

widgets.

Widgets (1ib/widgets/): Offers a wide set of reusable Ul components including

form fields, buttons, star ratings, Google Maps wrappers, and custom builders.

Utils (1ib/utils/): Contains general-purpose helper functions and utilities for
formatting, validation, HTTP requests, and advanced features such as image-based

identity checks.

Core (lib/core/): Hosts application-wide constants, color themes, device info

utilities, and global style definitions to maintain a consistent design across the app.

Authentication is handled by AuthRepositoryImpl and FirebaseAuth, while user identity

and session state are maintained using the UserProvider. Theme switching between dark

and light modes is controlled by ThemeProvider, and exposed through Ul components
like the ThemeChangeButton.

Overall, this architecture enforces a clear separation between presentation, logic, and data

access, promoting reusability, testability, and scalability.



2| Architectural Design 11

2.4. Component View

This section expands on the high-level architecture by analyzing the internal organiza-
tion of all the macro components involved in the application: the arrows represent the
navigation flow between the pages in the client view and the interactions with the model
and all the external components. For readability reasons we modeled the the View-Model
and Model-DB interactions since all the model components retrieve and load data in the
respective collection in the DB and sends the data to the view where it is processed : the
pages rendering logic is indeed embedded in the pages themselves and doesn’t make use

of a dedicated backend structure.

View

/ LoginPage ] [ ConverstionModel ] [ ReviewModel ]
R

‘ EventDetailsPage ‘ [ EventCreationPage ]

ChatListPage

[Render

g l l ChatPage l l EventFetching l l FaceRecognition/DriverLicenseScanner l

Services /

N 12 s 12
[ TicketMaster ] l Azure Face I [ Google Maps ] [ GoogleAuth ]

ReviewListPagel l Qs I IReviewC i

e] [

Firebase

[Firebase Firestore

Figure 2.2: Architecture of the application



12 2| Architectural Design

2.4.1. Components Description

The functionalities of the app are offered to the user through the interaction betwwen
local and remote components.
This paragraphs expands the description of the single components as they are presented

in the Component view of the app above.

View
The view includes all the pages the user can navigate through: in Drive or Drunk the
view also embed the controller logic since the rendering logics are implemented directly

inside the pages and doesn’t make use of dedicated backend components.

A detailed description of all the view components is provided below.

e Login Page: the Login Page is the first page shown to the user at the users: this
page allows the user to log in using a DriveOrDrunk or a Google account (Google
SSO login), to reset their password or create a new DriveOrDrunk account if they

don’t have one.

e Register Page: this page is shown to the user who wants to create a new DriveOr-
Drunk account: it implements the form where the user will insert all the necessary

data for the creation of it (Name, e-mail, password)

e NavigationBar: when an user logs into the app, the Navigation bar is loaded: this
component allows the user to move between the four main sections of the app: the

Homepage the Events Map Page the ChatListPage and the Profile Page

e Homepage: the Homepage is the first page the user can see after accessing the
app as it’s the one loaded by the Navigation Bar by default. This page hosts the
research functionalities of the app: through a tab the user can switch between Users
and Events research. While the events can be searched for name place and date,
only the name can be used to search for Users. In the trending section the user can

have a view of the the most joined events in the database.

e EventsMapPage: thanks to this function, implemented through the integration
with google Maps api, the user can search for any place in the map and see all the
exact positions of the events available in that area, visualizable as pointers in the

map or as a list in the EventsListPage

e ChatListPage: the chatlist page shows all the active chats between the current



2| Architectural Design 13

user and other users in the app, clicking on a chat the ChatPage opens, which
implements the actual messaging functions allowing the users to send messages to

each other

e ChatPage: this page is shown when chatting with a user: it can be reached from
the ChatListPage or from the profile page of an user through an apposite button.
ProfilePage can also be reached from this page clicking on the name of the other

user involved in the chat, visible in the page

e ProfilePage: This page is used to show the profile of a generic user, but, if accessed
through the Navigation Bar, it shows the current user’s personal profile. Through
their personal page the user can modify his age and profile picture, see a preview
or access the list (shown in ReviewListPage) of the reviews that other users left
them, access the PersonalRidesPage to see the rides he has created as a driver
and joined as a drunkard, and access the procedure to verify his profile through his
driver license to be allowed to join events as a driver. This functionality is offered
through a script in Render, that receives a picture of the user and of his driver

license and relies on Azure Face to compare the two pictures.

e ReviewCreationPage: this page contains the form to create a review and can be
accessed by the profile page of each other user in the system to leave him a review

to rate the experience with that user as a driver or drunkard.

e ReviewListPage: this page is accessible from self and other users profile pages
and offers a complete view of all the reviews received by that user. The two kinds
of list (driver and drunkard reviews) are shown in two distincted reviewListPages

accessed through different buttons in the profile page.

e EventListPage:)This page shows a list of events resulting from a research made
from the HomePage or from the EventMapPage. When selecting an event from the

results the user is redirected to their profile page, the list can be filtered by favorites

e EventDetailsPage: This page is accessed after the selection of one event from
the homepage trending events section, an EventListPage or by Rides page when
reached by an user’s profile page (details below). It shows the name place and
description of the event and allows the user to subscribe as a driver or drunkard to

the event

e EventsCreationPage: In DriveOrDrunk users can also create their custom events:
his page is accessible through a button on the EventListPage and it allows a user

to create their personal event.



14 2| Architectural Design

e UsersListPage: This page is shown as the result of an user research made using
the homepage research form, when selecting an user from the results the user is

redirected to their profile page, the list can be filtered by favorites

e RidesPage: this page is accessible by the EventDetailsPage and by the profile
page of another user. In the first case it shows the list of the available rides for that
event with info about the driver of each ride, whose profile page can be accessed
tapping on the info box. In the second case instead, it shows all the rides that the
user is offering as a driver, with info of each event: in this case the info box will

redirect the user to the EventDetailsPage of that event.

e PersonalRidesPage: this page is shown when the user clicks on the available rides
button on his personal profile page: it has to sections handled by a tab bar: the
two sections show respectively the list of rides booked as a drunkard and created as
a driver. In the first section for each ride informations about event and driver are
available and linked to EventDetails and Profile page respectively of the driver and

the event. In the second one only the one about the event are provided.

Model

The Model is composed by the User, Event; Ride, Conversations, and Review components.
The model components is in charge of retrieving data from database and passing it to the

view and viceversa.

Render

Render is a cloud service that

External Services

e TicketMaster
TicketMaster is used to retrieve data about events to be shown inside the applica-
tion. Render periodically retrieves data from TicketMaster and pushes it into the

database.

e Google Maps
Google Maps is used in the EventsMapPage to show the Map with the position of

events in each selected area

e Google Auth

Google Auth is used to allow SSO login for users using their google account.



2| Architectural Design 15

e Azure Face
Azure Face is used by render to perform face recognition during the identity verifi-

cation procedure

Firebase

Firebase is a Baas (Backend-as-a-Service) for web and mobile applications developement.

For our purpose we used only two services among the ones offered.

e FirebaseAuth
This service offers automatization of the procedure of user authentication, all the
created users are saved on the autentication service storage and synchronized with

the User collection in the database.

e Firebase cloud Firestore
Through this service Firebase offers a NoSQL database for our application which
contains all the data the application needs. The collection contained in the database

are User, Event, Review, Conversations, Messages and Rides.

2.4.2. Model View Controller (MVC)

Model View Controller (usually known as MVC) is a software design pattern commonly
used for developing user interfaces. It divides the related program logic into three in-
terconnected elements to separate internal representations of information from the ways

information is presented to and accepted from the user.
These three components are:

e Model: The central component of the pattern. It is the application’s dynamic data
structure, independent of the user interface. It directly manages the data, logic,

and rules of the application.
e View: Any representation of information that will be displayed to the end user.

e Controller: Accepts input and converts it to commands for the model or view, this
component in Drive Or Drunk is actually integrated in the view, which encapsulates

all the rendering logics.



16 2| Architectural Design

2.5. Deployment View

Figure 7?7 shows the deployment topology of the Drive or Drunk system. The diagram
illustrates how the system’s components are distributed across various devices and cloud
platforms. Each node represents a logical or physical entity, along with its underlying

operating system or hosting service.

Client
Client_app M
2] £ ]
View Model
http
Render
http Fhenr:ilerSn:rir.:tsE
http
Firebase
FirehageFirestnreE‘ ‘ Finel::'agzﬂ_-.f:uuthE

Figure 2.3: Deployment view of the application

e Tier 1 — Client Device: The client device is a smartphone running Android or
iOS, where the Flutter application is installed. This app handles user interaction, Ul

rendering, and communicates directly with both Firebase services and the backend



2| Architectural Design 17

server using secure HTTPS requests.

e Tier 2 — Firebase Authentication: This tier is hosted in the cloud and provides
user authentication services. It is responsible for managing sign-in operations, in-
cluding Google Sign-In, and issuing secure access tokens used by the mobile app to

authenticate requests.

e Tier 3 — Render Backend Server: This tier hosts a custom backend deployed on
Render. It handles application-specific logic that cannot or should not be executed
on the client, such as facial verification, image processing, and fetching external
events from the Ticketmaster API. It communicates with both the client and Fire-

store securely via RESTful interfaces.

e Tier 4 — Firebase Firestore Database: This cloud-based NoSQL database stores
persistent information such as user profiles, events, ride requests, and verification
metadata. It is accessed by both the mobile client and the backend through Fire-

base’s secure SDK and API interfaces.



////M//////////é N 1 \\\\\\\ / \m\\ %
2N /// \ 117717/ s
//// N\ //// ////::_:::\\\ //) \\\ \\\\
NN 779477770770 00 /2 2
NN N e otrts
oty HH1100177 070070 2 2
SO 77752777777 000 2 2 2 2 27
J ///// /// N //// ////N///////////é __ ________,5\ I \\\\\\\ \\w\\ \\\\\\\\\\\\\\ =
~ 3N M s
N T e
—— f ot
—— = R
- ““\\\\\\\\\\\\\\\\\\m\\\w\w\\ 77 /////////////,/////////////// //// ///UU/
N RN R
1 NN
5577 NN
2 T I A O O



19

3 ‘ User Interface Design

3.1. Introduction

The aim of this section is to show the design of the main screens of the user application,
describing the flow of the main functionalities for which it is intended. The flow is created

according to specific and illustrated input from the end user.

3.2. Mobile Application Interface



20 3| User Interface Design

Email
{ armifio22@gmail.com ‘
Password

Remember me Forgot Password?

Login

Don't have an account? SIGN UP
Or continue with

{5 sign in with Google

Figure 3.1: Login Page



3| User Interface Design

Name

Email

Password

Confirm Password

Sign Up

Have already an account? LOGIN

Figure 3.2: Registration Page

21



22

3| User Interface Design

10306 G O O - v\
Home B ¢

Drive or Drunk?

Events Users

Q, Search events

Q@ Select place [™ Pickadate

Trending now

0 =

Home Map Chat Profile

Figure 3.3: Homepage



3| User Interface Design

mw3Ze e o 0o .
& Eventsin Q The World 7/

Figure 3.4: Event List Page

23



24

3| User Interface Design

MN25G GO 0O - @'N
& Create New Event ¢

Event Title*

Event Description

Event Date?* D
Event Place
®
+
Google

‘ Select Image ! ’

Figure 3.5: Event Creation Page



3| User Interface Design

Piano Bar Soho Jazz Club Q
DF'lda\; June 27 ° London

About this event

No description provided

fx) 0 drivers available

Figure 3.6: Event Detail Page

25



26

3| User Interface Design

10326600 -
¢  AllUsers

o/

Figure 3.7: Users List Page



3| User Interface Design

v QD =

Events Map [London x] Q

Robert St

é\\ Hampstead R

5 Alfie's Jazz Club - Soho

London

CHINATOWN

e National GaeAC) IS

S

&0 SR 28
o f'ondoen]EYVe] =s

WESTMINSTER

Figure 3.8: Events Map Page

27



28

3| User Interface Design

M2 o 0O -

&« @ Christian Mariano

Message...

T

Ciao

26 Jun 16:58

Figure 3.9: Chat Page



3| User Interface Design

10306 G § O - v\
B ¢

Chats
Eren Genis
ciao 1 Jul 14:42
Christian M...

« Ciao 26 Jun 16:58

s o @ o

Home Map Chat Profile

Figure 3.10: Chat List Page

29



30 3| User Interface Design

10322660 0 - v\

Your Profile B ¢

' ™y
Identity verification needed

& Upload a driver's license and a selfie 1o verify  Verify
your identity.

Your Rides >

ARMANDO FIORINI
24.(2)

DRIVER

Mo reviews available for this user.

DRUNKARD

No reviews available for this user.

A 8 B @@

Home Map Chat Profile

Figure 3.11: Profile Page



3| User Interface Design

1Mo G G OO - v

& Rides

ARMANDO FIORINI
Age : 42
Mo rating yet for this driver

Available seats: 3

Figure 3.12: Rides from Profile Page

31



32

3| User Interface Design

MG e 0o - v

&  Rides ¢
HOUSUPA - SUMMER ROOFTOP SERIES
26/06/2025
London

Available seats: 3

Figure 3.13: Rides from Event Page



3| User Interface Design

NG GO0 - v\
&  Create Review ¢ v

Rating:

Text:

Figure 3.14: Review Creation Page

33



34

3| User Interface Design

nmeGeGeo0o -

& Drunkard Reviews

ARMANDO FIORINI

kW W vy 29/06/2025
Please tell me that it works

| —

-~

ARMANDO FIORINI

% % % %y 29/06/2025
YEEEEEEES

ARMANDO FIORINI

* Wiy 29/06/2025

sium

ARMANDO FIORINI

kW Wiy 29/06/2025
Good

e

p
0 EREN GENIS

ok Wk 14/06/2025

| don't know who he is, just pulting a review to fill a

space

L.

Figure 3.15: Reviews Page



35

4: Requirements

The following list contains the requirements that the application should satisfy, together

with a brief explanation of them.

1. User Registration and Login
The system allows the registration and login of a user. Users can create an ac-
count by providing their personal details and verifying their identity through facial
recognition and an ID document (e.g., using a free API like Microsoft Azure Face

API).

2. Viewing Events
The system allows users to view an interactive calendar of local events based on
their selected city. These events, such as nightclub parties or concerts, are created

and managed by event organizers or venue owners, not by users.

3. Driver Registration
The system allows users to register as drivers by providing their personal information
and verifying their identity using a government-issued ID. The app requires users

to upload their driver’s license for verification.

4. Driver and User Verification
The system verifies drivers by checking their driver’s license and ID document
against their selfie using an identity verification service. This ensures the authen-

ticity of both drivers and riders on the platform.

5. Ride Booking
The system allows users to book a ride from a driver based on their location and the
available drivers nearby. Users can book rides in advance or on the spot, depending

on availability.

6. Driver Availability
The system allows drivers to mark their availability for specific events. This ensures
that users can see when a driver is available to give them a ride to a particular

event.



36

10.

11.

4| Requirements

Event and Driver Matching
The system matches users with available drivers based on their location and the
event they plan to attend. Users can also view a map showing the drivers available

near the event location.

Messaging
The system allows users to communicate with drivers via an integrated messaging
system to coordinate ride details such as pick-up points, times, and special instruc-

tions.

Reviews and Ratings
The system allows users to rate their drivers using a 0 to 5-star system and leave
feedback. This helps maintain a high level of service quality and trustworthiness

within the platform.

Notifications
The system sends push notifications to users to inform them about available drivers,
ride confirmations, and reminders about upcoming events. Notifications are also sent

to drivers when a new user books a ride with them.

Favorites and Notifications for Events
The system allows users to add events to their favorites, so they receive notifications
when a driver becomes available for that event. This ensures that users are notified

of ride availability for the events they’re interested in.



37

5 ‘ Implementation, Integration

and Testing

In this section, we describe the testing process conducted for the Drive or Drunk ap-
plication. We detail the environments used, the dummy data loaded into the database,
the display formats tested (phone, tablet portrait, tablet landscape), and how external

services were mocked.

The following subsections explain the different types of tests performed: unit tests (used
only to a limited extent due to the app’s heavy reliance on external services), widget tests
(where we thoroughly tested graphics, function calls, and interactions with primary-level
widgets in a controlled environment), and integration tests (run on physical devices with

less control but more realism).

5.1. Unit Tests

Since the application depends heavily on external services (e.g., Firebase Auth, Firestore,
network images, geolocation APIs), only a small portion of the codebase is suited for pure
unit testing. We focused on testing the core models (User, Review, Event, etc.), using

dummy input and mocking external responses.

The average coverage for files in the 1ib/models/ directory reached 89.5%, as reported
by LCOV. This was achieved thanks to the clean separation of logic and the ability to

inject simulated data.

5.2. Widget Tests

This was the most extensive part of the testing campaign. All major widgets in the project
were tested in controlled environments, with comprehensive use of mocking. Mocked

services included:

e FirebaseAuth (via Mock/FakeUser)



38 5| Implementation, Integration and Testing

e FirebaseFirestore (via the FakeFirebaseFirestore package)
e Network image loading (using the networkImageMock package)

We were unable to fully mock Google Maps APIs; instead, we used dummy coordinates

to simulate geolocation functionality.

Each test loaded the necessary dummy data into the mocked database to simulate specific
user flows (e.g., “userl created an event and invited user2”). For each widget, we tested
UI rendering, function calls, and first-level interactions with related widgets. When ap-
plicable, we tested the widget across phone and tablet (portrait and landscape) screen

sizes.

5.3. Integration Tests

We conducted end-to-end testing of the application on physical devices to verify real-
world functionality. This included interactions with live Firebase services and network
operations, testing how the app handled delays, errors, and external responses. We pop-
ulated the Firebase database to simulate real situations (with users, events, reviews, etc.)
and tested the main functionalities of our application. Integration testing enables the
simulation of more complex behaviors, navigation between various screens, and, in our

case, allowed us to test using real location data to filter nearby places.
Key integration tests included:

e User authentication

Searching for events

Booking rides

Searching for users

Sending and displaying chat messages



5| Implementation, Integration and Testing 39

File Name Description Screen Path
login flow test.dart | Login Login — Home
event flow test.dart | Search and register | Login — Home — SearchEvent —
for an event FEventsList — FventDetail —
RidesPage

chat flow test.dart Search for an user | Login — Home — SearchUser —

and send a message | UsersList — UserProfile — ChatPage

5.4. Coverage Analysis

Using LCOV, we measured an overall line coverage of 85.5% across 4,197 lines, as seen
in Figure 5.1. Several directories reached full or near-full coverage, including constants,

theme, and widget files.
Some lower-coverage areas (e.g., 1ib/features/authentication, lib/features/events)

were due to hard-to-mock dependencies or edge-case logic.

Excluding code strictly dependent on external APIs (e.g., location/mapping services), we
estimate that the actual testable logic coverage exceeds 90%, providing strong verification

for the app’s core functionality.

LCOV - code coverage report

Current view: top level Coverage Total Hit
Test: Icov.info Lines: 85.5% 4197 3587
Test Date: 2025-07-04 23:13:17 Functions: - 0 0
)
Directory
-m--m“

Llib/config/lib/config I:I 83.8%
Lib/core/constants/lib/core/constants | E— 100.0 % 10 10
Libys /lib/core/theme | —r 96.3 % 54 52
s/authentication/lib/features/authentication —— 77.6% 388 301
—— 87.6 % 201 176
—— 77.8% 577 449
—— 85.7% 5] 30
| —— 90.0 % 350 315
—— 88.7% 53 47
= 94.7 % 57 54
| — 94.8 % 58 55
lib/models —— 89.5% 542 485
s/lib/services —— 77.2% 232 179
utils/lib/utils | —] 94.4% 142 134
1l /widgets/chat | E— 100.0 % 90 90
Lib/widgets/clippers/Lib/widgets/clippers | — 97.1% 34 33
Lib/widgets /events/lib/widgets/events | E— 96.6 % 88 85
Llib/widgets /home_page/lib/widgets/home_page —— 79.2% 366 290
Lib/widgets/inages/lib/widgets/images | E— 100.0 % 22 22
1ib/widgets/Lib/widgets —— 84.9% 578 491
Uibswidgets/rides/Lib/widgets/rides [E—— 92.7% 191 177
1ib/widgets/users/lib/widgets/users | E— 96.7 % 30 29

Generated by: LCOV version 2.0-1

Figure 5.1: Code coverage summary generated by LCOV.



////M//////////é N 1 \\\\\\\ / \m\\ %
2N /// \ 117717/ s
//// N\ //// ////::_:::\\\ //) \\\ \\\\
NN 779477770770 00 /2 2
NN N e otrts
oty HH1100177 070070 2 2
SO 77752777777 000 2 2 2 2 27
J ///// /// N //// ////N///////////é __ ________,5\ I \\\\\\\ \\w\\ \\\\\\\\\\\\\\ =
~ 3N M s
N T e
—— f ot
—— = R
- ““\\\\\\\\\\\\\\\\\\m\\\w\w\\ 77 /////////////,/////////////// //// ///UU/
N RN R
1 NN
5577 NN
2 T I A O O



41

List of Figures

1.1 Entity Relationship Diagram of Firebase Collections . . . . . . . . . . . .. )
2.1 Black-box view of the Drive or Drunk system architecture . . . . .. . .. 7
2.2 Architecture of the application . . . . . . . . .. .. ... ... .. 11
2.3 Deployment view of the application . . . . . . . .. ... ... ... ... . 16
3.1 Login Page . . . . . . . .. 20
3.2 Registration Page . . . . . . .. .. 21
3.3 Homepage . . . . . . . . 22
34 Event List Page . . . . . . . . .o 23
3.5 Event Creation Page . . . . . . . .. .. ... 24
3.6 Event Detail Page . . . . . . . . ... 25
3.7 Users List Page . . . . . . . . . 26
3.8 Events Map Page . . . . . . .. .. 27
3.9 Chat Page . . . . . . . . 28
3.10 Chat List Page . . . . . . . . . . 29
3.11 Profile Page . . . . . . . .. 30
3.12 Rides from Profile Page . . . . . . . . . ... oo 31
3.13 Rides from Event Page . . . . . . . . . ..o 32
3.14 Review Creation Page . . . . . . . . . . .. ... .. 33
3.15 Reviews Page . . . . . . . . . 34

5.1 Code coverage summary generated by LCOV. . . . . ... ... ... ... 39



	Contents
	Introduction
	Purpose
	Scope
	Definitions, Acronyms, and Abbreviations
	Definitions
	Acronyms

	Reference Documents
	Packages Used – Application
	Document Structure
	Entity Relationship Diagram

	Architectural Design
	Architectural Style
	Key Features
	High-level Components and Their Interaction
	Component View
	Components Description
	Model View Controller (MVC)

	Deployment View

	User Interface Design
	Introduction
	Mobile Application Interface

	Requirements
	Implementation, Integration and Testing
	Unit Tests
	Widget Tests
	Integration Tests
	Coverage Analysis

	List of Figures

